Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 355: 120476, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442657

RESUMO

Worldwide, states are gazetting new Marine Protected Areas (MPAs) to meet the international commitment of protecting 30% of the seas by 2030. Yet, protection benefits only come into effect when an MPA is implemented with activated regulations and actively managed through continuous monitoring and adaptive management. To assess if actively managed MPAs are the rule or the exception, we used the Mediterranean and Black Seas as a case study, and retrieved information on monitoring activities for 878 designated MPAs in ten European Union (EU) countries. We searched for scientific and grey literature that provides information on the following aspects of MPA assessment and monitoring: ecological (e.g., biomass of commercially exploited fish), social (e.g., perceptions of fishers in an MPA), economic (e.g., revenue of fishers) and governance (e.g., type of governance scheme). We also queried MPA authorities on their past and current monitoring activities using a web-based survey through which we collected 123 responses. Combining the literature review and survey results, we found that approximately 16% of the MPA designations (N = 878) have baseline and/or monitoring studies. Most monitoring programs evaluated MPAs based solely on biological/ecological variables and fewer included social, economic and/or governance variables, failing to capture and assess the social-ecological dimension of marine conservation. To increase the capacity of MPAs to design and implement effective social-ecological monitoring programs, we recommend strategies revolving around three pillars: funding, collaboration, and technology. Following the actionable recommendations presented herein, MPA authorities and EU Member States could improve the low level of MPA monitoring to more effectively reach the 30% protection target delivering benefits for biodiversity conservation.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Biomassa , Ecossistema , Pesqueiros , Peixes/fisiologia , Oceanos e Mares , Inquéritos e Questionários
2.
Animals (Basel) ; 14(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38200792

RESUMO

European hake, Merluccius merluccius L. 1758, is a highly valuable demersal fish species exploited in both the east Atlantic and the Mediterranean Sea. Changes in the size-at-maturity of this species have been reported in various geographic areas. Size-at-maturity is a key parameter in fishery management. Our main goal was to study the trend of the size-at-maturity of European hake in the eastern Ionian Sea (Central Mediterranean) over the last five decades. Utilizing a multi-decadal series of data for various environmental variables, we employed multivariate analyses and non-additive modeling in an attempt to identify shifts in the climatic environment of the eastern Ionian Sea and whether the maturation of the hake population could be affected by these changes. The analyses used suggest a plausible environmental regime shift in the study area in the late 1990s/early 2000s. The decrease in size-at-maturity that was detected in the last two decades may, thus, be associated with environmental changes. However, as many fish stocks already experience fishery-induced evolution, further investigation is necessary to determine whether this environmental effect is an additional stressor on a possibly already fishery-impacted population. The outcomes of this study highlight the importance of investigating the relationship between fish reproductive traits and altered environmental conditions, as the latter are generally ignored during assessments, affecting the robustness of fishery management.

3.
Ecol Evol ; 11(23): 16951-16971, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938484

RESUMO

Climate change (CC) can alter the configuration of marine ecosystems; however, ecosystem response and resilience to change are usually case-specific. The effect of CC on the demersal resources of the Aegean Sea (east Mediterranean Sea) was investigated during the past six decades applying a combination of multivariate analysis, non-additive modeling and the Integrated Resilience Assessment (IRA) framework. We focused on the study of: (i) the biological "system" complex, using proxies of biomass (landings per unit of capacity) for 12 demersal taxa, and (ii) the environmental "stressor" complex, described by 12 abiotic variables. Pronounced changes have occurred in both the environmental and biological system over the studied period. The majority of the environmental stressors exhibited strikingly increasing trends (temperature, salinity, primary production indices) with values started exceeding the global historical means during late 1980s-early 1990s. It is suggested that the biological system exhibited a discontinuous response to CC, with two apparently climate-induced regime shifts occurring in the past 25 years. There is evidence for two-fold bifurcations and four tipping points in the system, forming a folded stability landscape with three basins of attraction. The shape of the stability landscape for the Aegean Sea's biological system suggests that while the initial state (1966-1991) was rather resilient to CC, absorbing two environmental step-changes, this was not the case for the two subsequent ones (intermediate: 1992-2002; recent: 2003-2016). Given the current trajectory of environmental change, it is highly unlikely that the biological system will ever return to its pre-1990s state, as it is entering areas of unprecedented climatic conditions and there is some evidence that the system may be even shifting toward a new state. Our approach and findings may be relevant to other marine areas of the Mediterranean and beyond, undergoing climate-driven regime shifts, and can assist to their adaptive management.

4.
J Theor Biol ; 415: 48-52, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-27939597

RESUMO

Predicting biodiversity relaxation following a disturbance is of great importance to conservation biology. Recently-developed models of stochastic community assembly allow us to predict the evolution of communities on the basis of mechanistic processes at the level of individuals. The neutral model of biodiversity, in particular, has provided closed-form solutions for the relaxation of biodiversity in isolated communities (no immigration or speciation). Here, we extend these results by deriving a relaxation curve for a neutral community in which new species are introduced through the mechanism of random fission speciation (RFS). The solution provides simple closed-form expressions for the equilibrium species richness, the relaxation time and the species-individual curve, which are good approximation to the more complicated formulas existing for the same model. The derivation of the relaxation curve is based on the assumption of a broken-stick species-abundance distribution (SAD) as an initial community configuration; yet for commonly observed SADs, the maximum deviation from the curve does not exceed 10%. Importantly, the solution confirms theoretical results and observations showing that the relaxation time increases with community size and thus habitat area. Such simple and analytically tractable models can help crystallize our ideas on the leading factors affecting biodiversity loss.


Assuntos
Biodiversidade , Extinção Biológica , Especiação Genética , Animais , Evolução Biológica , Humanos , Dinâmica Populacional
5.
Ann N Y Acad Sci ; 1286: 50-61, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23672586

RESUMO

The species-area relationship (SAR) predicts that smaller areas contain fewer species. This is the basis of the SAR method that has been used to forecast large numbers of species committed to extinction every year due to deforestation. The method has a number of issues that must be handled with care to avoid error. These include the functional form of the SAR, the choice of equation parameters, the sampling procedure used, extinction debt, and forest regeneration. Concerns about the accuracy of the SAR technique often cite errors not much larger than the natural scatter of the SAR itself. Such errors do not undermine the credibility of forecasts predicting large numbers of extinctions, although they may be a serious obstacle in other SAR applications. Very large errors can arise from misinterpretation of extinction debt, inappropriate functional form, and ignoring forest regeneration. Major challenges remain to understand better the relationship between sampling protocol and the functional form of SARs and the dynamics of relaxation, especially in continental areas, and to widen the testing of extinction forecasts.


Assuntos
Biodiversidade , Espécies em Perigo de Extinção/tendências , Extinção Biológica , Algoritmos , Animais , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Interpretação Estatística de Dados , Espécies em Perigo de Extinção/estatística & dados numéricos , Dinâmica Populacional , Projetos de Pesquisa , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...